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TRANSIENT ROTARY SHEAR WAVES IN
NONHOMOGENEOUS VISCOELASTIC MEDIA
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Abstract—Propagation of axisymmetrical rotary shear waves in nonhomogeneous viscoelastic media with a
cylindrical hole is studied. Nonhomogeneities are assumed to depend on the radial distance from the axis of the
hole. By means of the theory of the propagating surfaces of discontinuities, the solutions for the shear stress and
particle velocity are expanded as Taylor series about the time of arrival of the wave front. Both stress-prescribed
and velocity-prescribed boundary conditions are considered. The corresponding elastic problem is investigated
as a special case; and, for certain types of nonhomogeneity, explicit solutions are presented and compared with
the solutions obtained by the Laplace transform technique.

INTRODUCTION

THE transient wave propagation in nonhomogeneous elastic media has drawn much
attention recently. Sternberg and Chakravorty [1] investigated the propagation of rotary
shear waves in a nonhomogeneous isotropic elastic plate of infinite extent with a circular
opening. In {1, it was assumed that the shear modulus of the material was proportional to
an arbitrary power of the radial distance from the center of the hole. Solutions were
obtained by the Laplace transform technique. Chou and Schaller [2] later reconsidered the
problem by employing the method of characteristics to develop a numerical scheme which
was feasible for a wider class of nonhomogeneities. An analogous problem of axial shear
wave propagation in nonhomogeneous elastic media has been investigated by Chou and
Gordon [3] and later by Reddy and Marietta [4] by employing different approaches.
Several authors [5-8] obtained solutions for longitudinal waves in various nonhomo-
geneous elastic rods of finite and semi-finite lengths.

A survey of the literature indicates that while propagation of transient waves in non-
homogeneous elastic media has received considerable attention, few problems of transient
wave propagation in nonhomogeneous viscoelastic media have been investigated. Only
recently Reiss [9] has studied the propagation of one-dimensional stress discontinuities
in nonhomogeneous viscoelastic media by employing theory of weak solution. Since he
used the model representation for the viscoelastic constitutive relation, the analysis was
limited to less realistic materials.

In the present paper, the propagation of transient cylindrical shear waves in non-
homogeneous viscoelastic bodies is considered. The constitutive relation of the material is
described by a creep function in shear. The theory of propagating surfaces of discontinuity
is employed. Both the solutions for the stress and the particle velocity are expressed as
Taylor’s expansions about the wave front. Two types of boundary conditions with stress
and particle velocity prescribed are considered. This analysis leads us to study the stress
discontinuities of various order. The method, as is employed here, was applied by Achenbach
and Reddy [10] to solve a wave propagation problem in a homogeneous viscoelastic rod,
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and, later, by Reddy [8] and Reddy and Marietta [4] to investigate the longitudinal wave
propagation in a nonhomogeneous semi-infinite elastic rod and the axial shear wave
propagation in a nonhomogeneous elastic medium.

The elastic problem considered by Sternberg and Chakravorty [1] naturally becomes a
special case of the present investigation. The type of nonhomogeneity and the boundary
conditions, as treated in this paper, are, however, more general than that of [1]. Asexamples,
elastic materials with simple power distribution of the shear modulus under a step stress
pulse are considered. For certain cases, where closed form solutions are obtainable by the
Laplace transform technique, it is shown that the same solutions can be obtained by the
present method. A numerical comparison between the present analysis and [1] is done for
a particular case for which there exists no closed form solution. It is found that a few terms
in the Taylor expansion suffice to give an accurate solution for the stress that is sufficiently
near the wave front.

FORMULATION OF THE PROBLEM

For an axisymmetrical displacement field of pure rotary shear, the nontrivial displace-
ment component and the equation of motion in cylindrical coordinates (r, 0, z) are

up = u(r, 1) 1
and
ot 2t d%u
aty e @

respectively. In equation (2), 7 is the nonvanishing shear stress and p(r) is the mass density.
The physical problem governed by equations (1) and (2) may be interpreted as a plate of
infinite extent with a circular hole or an infinite medium with a cylindrical port subjected to
an axisymmetrical rotary disturbance. For convenience, we choose, in the sequel, the
former case for discussion.

Consider a nonhomogeneous, linearly viscoelastic plate with a circular hole of radius a.
We assume that the plate is in a state of plane stress. The material properties are assumed to
depend solely on the radial distance from the center of the hole. If the medium is at rest
prior to t = 0, the stress—strain relation can be expressed in the form

t

2¢e,4(r, t) = Jo(r)elr, t)+ JU(r, t—s)(r, s)ds 3)
0+

where the shearing strain is defined as

1jou u
8m=55‘ﬂ @
and J(r, t) is the creep function in shear. In equation (3) we also define
IO 1) = a"J(r, t), Jo = J(r,0), JO = 0_{(1’_‘_) ] (5)
or" ot" -0
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We first introduce the following new variables:

c=rt (6)

m=rp ()

U = u/r, V =v/r @®)

B®r,t) = J"r, t)/r* By =Jyr, BP =JPN. ©)

In equation (8), v is the tangential particle velocity. By virtue of the above modified quantities,
we are allowed to rewrite the governing equations, equation (2) and (3), in simpler forms
as

oo 02U

&= "am o
ou o
—— = By(r)o(r, t)+ f BY(r, t—s)o(r,s)ds (11
or 0+

respectively. Thus, we need to determine the solutions for equations (10) and (11) which are
conformable to the appropriate boundary conditions. In this paper, two types of boundary
conditions will be considered:
(a) The shearing stress at the hole, 1(a, ), is prescribed and can be represented by a
Maclaurin expansion

n

x t
wa, )= Y t,— >0 (12)
n=0 n!

(b) The tangential particle velocity at r = a, v(a, 1), is prescribed and can be expanded as

n

vla, t) = i v, t> 0. (13)

t!

PROPAGATION OF THE WAVE FRONT

The wave front is defined as the surface which travels through the medium as ¢ varies
continuously, and across which there may exist a discontinuity in the stress, particle velocity
and their time derivatives. In view of the axisymmetry of the problem, we may suppose that
the position of the wave front is given by

r = (1) (14)
Then the velocity of the wave front relative to the material is obtained as
dy
c = a. (15)
From equation (15), we obtain
"dr

t=90)=| —. (16)

a
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Basic to the study of propagating discontinuities is the kinematical condition of com-
patibility which is discussed in general by Thomas [11]. For a function f(r, t) which is
discontinuous and has discontinuous derivatives across the wave front that moves in the
radial direction with velocity ¢, the kinematic condition of compatibility takes the form

d_. (o], [
a[f] = [5?]'*'0[5;:' a7

where, in the usual manner, finite jumps across the wave front are denoted by square
brackets.

In this paper, it is assumed that the integrity of the material is not affected by the
propagation of the stress, i.e. the displacement remains continuous. Thus

[u] =0 (18)

across the wave front. From equation (8), it is ﬁoted that the modified displacement U is
also continuous across the wave front. With the foregoing in mind, we apply the general rule
given by equation (17) to U to obtain

oU 1] oU
& --1%] t

Since the integral in equation (11) is continuous at the wave front, we have the relation

ou
[5;] = By[a]. (20)
Elimination of {dU/dr] from equations (19) and (20) yields
1 |aU
[0‘] = —‘Eo—cli—a‘t—] . (21)

Conservation of linear momentum at the wave front was discussed by Thomas[11]in a
general form. For the present problem, it can be expressed in the form

[t] = —pclv]. (22)

In terms of the modified stress o, the modified mass density m and the modified particle
velocity V, equation (22) becomes
[6] = —mc[V]. 23)

Comparing equation (21) with (23), we obtain
2 1 1

" Bom  Jonp()’

(24)

Thus, the wave front propagates with a velocity which depends on the glassy compliance
and the mass density, and, consequently, may vary as it penetrates into the medium.

PROPAGATION OF ROTARY SHEAR WAVES

The transient axisymmetrical shear wave propagation problem is governed by equations
(10) and (11) together with the quiescent initial conditions and the boundary conditions as
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given by equations (12) and (13). Following Achenbach and Reddy [10] we now seek the
solutions for the stress and the particle velocity as Taylor’s expansions about the time of
arrival of the wave front. In terms of the modified field quantities, ¢ and V, we write

S o R )

orv
V1) = Z —{t -} [ ] t = () (26)
n= t=¢(r)
The problem is then reduced to seeking solutions for the propagating discontinuities, or the
coefficients of expansion in equations (25) and (26).
We first differentiate equation (11) with respect to ¢ for n+ 1 times to obtain

an+2U an+1 n+1 an+1 'O'

sraer = Bl et L Bt [ B9 ds @)

Since the integral is continuous at the wave front, equation (27) yields the following relation
between the discontinuities

an+2U an+1 n+1 an+1 lo.
— 1= B
[aratn+l] B [a n+l:|+ Z B [atn+l z:I (28)
Applying the kinematic condition of compatibility as given by equation (17) to the
derivatives 0"*1U/0"* !(n > 0), we obtain

d[o"* U] Vil 0 o2y
dr atn+l [atn+2 ] |:6r FreEs 1]- (29)
Elimination of [0"*2U/drét"* '] from equations (28) and (29) leads to
d an+1U Fan+2U an+1 n+1 an+1 ,
5[ ot :I B or*? | = CBO[ F) "H] + Z CBS)I_ Lot - ;] (30)

For n = 0, equation (30) becomes

2
dt[w] ‘;ﬁ’] = cBo[Z"]wa”[a] (31)

From equation (10) we have .
[ b0 U
o =" | (32)

do do
=[] 7] )
equation (32) can be written as

02U 1(d oo
%] - et} .

By employing the relation
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We now substitute equations (23) and (34) in equation (31) to obtain, after some manipulation,

d
ol +ao] = 0, (35)
where
1J9 1 d
aft) = 5 T]——% a (mc). (36)

For n > 1, the discontinuities of the time derivatives of U on the left-hand side of
equation (30) can be replaced by the derivatives of 5 as follows. We differentiate equation (10)
with respect to time for n— 1 times to obtain

ano_ 6"“U
l:ar atn—l] = ml: atn+l :I : (37)

Using relation (37) we are able to eliminate the time derivatives of U from equation (30).
We obtain, forn > 1,

1I[ o6 1dJt +1 d[ &6 ] 1[e e _3 ot
cloroe=t{dt\m| “mcdt{oror | mc|oroe | O ot
n+1 an+l lo.
)
+ Z Bgljatn-fl 1:| (38)

By writing the kinematlc condition of compatibility for 6"~ '¢/0t"~ ' and d"¢/0t", and
employing the relation

Bo= (39)

we obtain from equation (38) the following linear ordinary differential equation for

[3"a/0t"]):
dfo"e "o
a[ﬁ] +°‘(‘)[57n] — F) for n>1. (40)

In equation (40), oft) is given by equation (36), and F,(t) is defined as

1 d2 an—lo, d an—lo. 1n+lBg) an+1—ia
F () == —| —= — | = =2 ) = =
A =3 dtz[at"‘l] 2{mc am )}dt[at""‘] 2 izzz B, [af'“-'] 4
If we define F,(t) = O for n = 0, the general solutions for equations (35) and (40) can be
written in a single expression as

[‘Zt"] - e—m{ f F (s)e"® ds+A,,} n>0 42)
0

B(t) = fo o(s) ds, 43)

where



Transient rotary shear waves in nonhomogeneous viscoelastic media 31

and A,(n = 0) are integration. constants to be determined by the boundary conditions.
The growth or decay of the magnitudes of propagating discontinuities is determined by the
sign of B(¢). In view of equation (36), it is evident that all such disturbances in a homogeneous
viscoelastic medium always attenuate, since for linear viscoelastic solids experiments have
confirmed the positive nature of J, and J§’, the glassy compliance and the initial slope of
the creep function. We also observe from equation (36) that it is possible for f(t) to assume
negative values for certain types of nonhomogeneity. Thus, the shear wave may also grow
as it propagates into a nonhomogeneous viscoelastic medium.

A close examination of equations (41) and (42) reveals that the solution of [8"¢/0t"]
depends on the solution of [8"~ '6/0t"" ). For n = 0, the solution is

[0] = Age PO (44)

For n > 1, the solutions are obtained from equation (42) together with equations (41) and
44).

Before we proceed to determine the arbitrary constants, 4,, it is necessary to determine
the coefficients, [0"V /6t"], of the Taylor’s expansion for the modified particle velocity V as
given by equation (26). Since the solutions for [6"¢/0t"] (n > 0) have been obtained, we will
express [0"V/dt"] in terms of [0"0/0t"] and their time derivatives. From equation (23), we
have

1
V]= ——1[ol 4
(V] il (45)
For n > 1, we employ the rule as given by equation (17) to 6"~ '6/5¢t"~*. We write
d[o e i [ 0%
d‘t[‘at—] - [ﬂ +a“aT—] (46)
Substitution of equation (37) in equation {46) yields
v 1 {d[o"ta] [0
[‘a?] = az{a[*atn—l_ B [atn]}' “7)

In deriving equation (47), the relation V = dU/dt was used. In view of equation (47), the
Taylor’s expansion for ¥ can now be written as

ng n—1
Vir,t) = Z "—{t_d’( oy { [Zt"] n:c jt[(‘;t"_f]}mw) “

in which we set
dfo e
—] ——1=0ifn=0. 4

dt[ét"“] ifn =0 (49)

This completes the general solutions for the stress and the particle velocity.

The two types of boundary condition as described by equations (12) and (13) are now
employed to determine the constants of integration in equation (42). For type A4 of the
boundary conditions, the stress is prescribed at r = g, and we can write

ola,t)= ) a,,% t>0 (50)
n=o0 n!
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in which the coefficients o, are given by
g, = a’t, (51)

Comparing equation (50) with equation (25) at r = g in conjunction with equation (42) we
obtain
A, = o, (52)

For type B of the boundary conditions, the particle velocity at the boundary surface
(r = a) is expanded in a Maclaurin series as given by equation (13). Equation (13) may also
be written in terms of the modified particle velocity V, i.e.

0 t'l
Via,t) = 3 Vi— t>0 (53)
n=0 n!
where V, are defined as
V, = v,/a. (54)
A comparison between equation (53) and equation (48) at r = g yields
oo d[o" ‘e
== = -me, 5
[6t"],=0 dt[at"_l],=o e 53)
It is noted that in equations (55) the relation t = ¢(r) at the wave front is employed. From
equation (42), we have
"o
A, = . 56
[ at"],=0 (56)
Substitution of equation (56) in equation (55) yields
d[o" e
=—|=—| -—meY, > 0. 57
n dtl:a["_l:lt=o mc n n—O ( )
In view of equation (49), we obtain the value of the first constant
Ao = —mCVo. (58)

It is observed that the solution for [0"~ '¢/0t" '] as given by equation (42) involves only the
constants A i < n—1). Thus, all constants 4, can be determined successively according to
equation (57) if the first constant A4, is known.

NONHOMOGENEOUS ELASTIC MEDIA

The governing equations as well as the solutions for waves in the nonhomogeneous
elastic medium can be derived from those as have been described in the previous sections
by requiring that

J®(r,t) =0forn = 1. (59)
More specifically, the stress—strain relation for the corresponding elastic problem is
i) 1
o (60)

or r u
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where u(r) is the shear modulus, and is a function of r only. It is easy to show that

1
Jo = ; (61)
and that equation (11) becomes
QE = By(r)a(r, t) 62)
or
in which
Bo(r) = 1/ru(r). (63)

By substituting equation (59) in equation (36), we can carry out the integration of equation
(43) to obtain

B0 = 3 log( 2| 64

moeCo
where

my = m|r=a Co = C|r=a' (65)

It follows that equation (42) now takes the form

k3
)A ds+An} (66)

oo me \¥{ * me "~
[5t"] B ('"OCO) {fo F"(S)(moco

1 d*fo'e] 11 d d[ oo
0 =3 ar[atn—] ‘5{;"7 a‘"’”}a[&rﬁ]' D

The problem of axisymmetrical shear wave propagation due to a suddenly applied
uniform shearing traction in a nonhomogeneous elastic plate of infinite extent was studied
by Sternberg and Chakravorty [1]. Solutions were obtained by the Laplace transform
technique. Chou and Schaller [2] reconsidered the problem by employing the method of
characteristics to develop a scheme for numerical solutions. In the sequel, we will consider
the problem of [1] as a special case of the present analysis, and compare the present solutions
with the solutions obtained in [1]. Following [1] the shear modulus of the nonhomogeneous
plate is taken proportional to an arbitrary power of the radial distance from the axis of the
opening, i.e.

in which

r n
ur) = #o(a) (68)

where 7 is an arbitrary real number, and y, is the value of g at the hole. In order to shorten
the analysis, the mass density p is regarded as constant. Using the expression for the shear
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modulus as given by equation (68), the following relations can be easily obtained :

By(r) = a"/uey* " (69)
m = pr’ (70)
¢ = colr/ay? (71)
co = (o/p)*. , (72)

If a stress of magnitude 7, is suddenly applied at r = a and maintained constant there-
after, the boundary condition is then given by equation (50) with

6o = a’t,, o0,=0 fornz>1 (73)

The position of the wave front satisfies

n2 er 4
t= o0 =" [ (74)

Co Ja

The integration of equation (74) depends on whether  # 2 or n = 2. This leads us to deal
separately with these two cases.

Casel.n #2
For n # 2, equation (74) yields
2q"?

= $0) = T —at ) (75)

Solving equation (75) for r we obtain

2_,1 2/(2—-m
r= a(—%—cot+1)

(76)

It is noted that equations (75) and (76) hold only at the wave front. With equation (76), the
expressions of m and ¢ at the wave front as given by equations (70) and (71), respectively, can
be written as functions of time, and, subsequently, the total differentiation of the product mc¢
with respect to time can be obtained. Equation (67) then assumes the form

1d?[o"'e| 6+n [2—n “tdfo e
£ --5@[5;"——1]“4700(70”1 acl e | 77

Solutions for the discontinuities are obtained from equation (66) by straightforward
integrations. The coefficients of expansion in equations (25) and (48) are subsequently
obtained from the discontinuities by replacing t by ¢(r). The general forms of the first two
coefficients are

P\ (6+my4
[6)i=otn = Ao(a)

o6 P\ —2-n2 | 6+mya
@ = A, — Aokl r 79
l:(%:l,:d,(,, { e (a) +A0k}(“) 79

(78)
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In equation (79),
co(6+n)(—10+17)

k= 80
16a(2—mn) (80)

In view of equation (52) and the boundary condition, equation (73), we have
Ag =09, A, =0forn > 1. (81)

For n = —%, the complete set of coefficients can be obtained as
r 4/3

[o):= =¢@r) = (— Oo (82)

I B e U

The solution for the modified stress o is

223 e ){g(t*_'a)}"—l=(é4f3—1>exp{—§(t*—a)}—1 26 (84

0o n=0

where
E=rla (85)
t* = cot/a (86)
3
0= 3(54’3— 1). 87

By using relations (6) and (51), we write the solution for the shear stress 7 in the dimensionless
form

™ = (2P - Y exp{—3(t* - )} —¢ 72 (88)
where
* = 1/1, (89)

is the dimensionless shear stress. This solution was obtained earlier by Sternberg and
Chakravorty [1], who used the Laplace transform technique.

The solution for the particle velocity may be similarly computed. It can be shown that the
closed form solution for v according to the present analysis also agrees with the solution
of [1].

For the case # = 10, we obtain

=) o

Since the boundary condition requires that A, = oo and 4; = Ofori > 1, it is evident that
[0] = 0o¢* (91)

is the only non-vanishing coefficient of expansion. The solution for the shear stress is then
=8 2 i1-&7Y 92)
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which agrees with the solution obtained in [1]. It is noted that the stress grows as it propa-
gates into the medium, though there is geometrical damping.

Case2.n =2
For this case, the time of arrival of the wave front at r is given by

t= () = c—‘zlogz. 93)

Inverting equation (93), we obtain
r = ae®", (94)

With equations (93) and (94) obtained, it is straightforward to calculate the coefficients of
expansion. The dimensionless solution for the shear stress is obtained as

it 1
Z n_ b,  t* >y (95)
where
y = log¢ (96)
’7.1
o =
LAPLACE TRANSFORM

8r — — — — PRESENT SOLUTION

10 TERMS

F1G. 1. Stress as a function of time at various positions for n = 2.



Transient rotary shear waves in nonhomogeneous viscoelastic media 37

and the first five coefficients of b, are

bo = 1
bl = _2'}’
by = 2)/2

4

4
b, = 4(Ey“~y2).

In Fig. 1, the dimensionless stress t* is plotted against t* for several values of £. The first
ten terms in the series are retained. For comparison, the solution obtained by Sternberg and
Chakravorty [1] is also shown in the same figure. It is found that the present 10-term
solution compares favorably with the solution of [1] over the time range that is close to the
time of arrival of the wave front. This range can obviously be widened if more terms in the
series are taken.
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A6ctpakT—MH ccnenyercsa pacnpocTpaHeHHE OCEHMMETPHYECKHX bpanyaMeOhibix BOJIH CABHIa B HEOAHOPO-
IHBIX BA3KOYNPYTMX Cpeflax ¢ LMJIMHAPHYECKMM OTBepcTHeM. [lpeanonaraercs, YToO HEOOHOPOAHOCTH
3aBHCHT OT PAJAMAJIbHOTO PACCTOSHUS OT OCH OTBepCcTHs. C NOMOLIBIO TEOPHH PACTIPOCTPAHEHKSA [IOBEPX-
HOCTEH pa3phbiBa, PaCUMPAIOTCH PEIeHUS IS HANPSXKEHHI CABUNa U CKOPOCTH YacTHL, bKasieCMbe PAOb
Teittopa mo BpeMend NpUOLITHA GPOHTA BONHBL. PaccMaTpHBAIOTCA KPaeBbie YCIOBHSA, TAK AJiS 3aGaHHBIX
HAIPAKEHHH , KaK ¥ 3alaHHONi CKOPOCTH. B KxauecTse coeluanbHOro Cilyyas, MCCAeayeTCs COOTBETCTBYIOIAN
ynpyras 3agaya. JaroTcs pelieHns B ABHOM BHAE U1 HEKOTOPLIX THNOB HEOAHOPOAHOCTH ACPaBHUBAIOTCA
C pelIeHUsMH, MIONYYEHHBIMH Ha OCHOBE Npeobpasosanns Jlamnaca.



